SCTP User Message Interleaving Integration and Validation

Felix Weinrank
Michael Tüxen
Irene Rüngeler
Erwin P. Rathgeb
Outline

● Brief introduction to SCTP
● Message interleaving and stream scheduler
● Integration and validation
● Measurements and results
● Outlook and future work
SCTP Overview

Stream Control Transmission Protocol

- Layer 4 protocol like TCP/UDP
- Message oriented and multihomed
- Originally designed for small messages
- Used for WebRTC data channels
Interleaving and Scheduling
Sender side Head-of-line Blocking
- A large SCTP user message blocks all other messages in any stream until completely sent

Message interleaving
- Reduces Head-of-line Blocking
- Specified by IETF draft *

1. Stream scheduler selects stream
2. Optional message fragmentation
3. Stream scheduler keeps locked on stream until all fragments of a single message have been sent
1. Stream scheduler selects stream
2. Optional message fragmentation
3. Stream scheduler keeps locked on stream until all fragments of a single message have been sent

Example: WebRTC chat application
- File transfer blocks chat messages
1. Stream scheduler selects stream
2. Optional message fragmentation
3. Stream scheduler selects next stream
Integration and Validation
Integration

- Integration follows IETF draft
- *iData* parameter enables interleaving support
- Interleaving is used if both peers announce the extension support in the 4-way-handshake
Validation

Wireshark
- Packet flow inspection
- I-Data support added

Packetdrill
- Script based testing tool for transport protocols
- Currently more than 120 interleaving specific tests
- Same tests for OMNeT++/INET and FreeBSD
Validation

External Interface

- Interoperability tests between FreeBSD’s SCTP implementation and OMNeT++/INET model
Measurements - scenario

Bottleneck scenario
● SCTP server and client
● Random UDP background traffic
Two competing streams

- **Stream 1**
 - Saturated
 - Large messages (1 - 128kB)
 - Low priority

- **Stream 2**
 - Unsaturated
 - Small messages (8 - 16B)
 - High priority
Measurements - results

\[d_n(s_{\text{msg}}) = \frac{s_{\text{msg}} + s_{\text{hdr}} \cdot \left\lceil \frac{s_{\text{msg}}}{s_{\text{frag}}} \right\rceil}{2 \cdot \text{bw}} + d_{\text{link}} + d_{\text{buffer}} \]

\[d_i(s_{\text{msg}}) = \frac{\text{mtu}}{2 \cdot \text{bw}} + d_{\text{link}} + d_{\text{buffer}} \]
Conclusion and Outlook
Conclusion

● Message interleaving reduces head-of-line-blocking for fragmented messages
● Wireshark, Packetdrill and the external interface are great tools to validate protocol operation

Outlook

● Buffering improvements
● New stream schedulers (e.g. weighted-fair-queueing)