
Performance and Security Evaluation
of SDN Networks in OMNeT++/INET

Marco Tiloca, Alexandra Stagkopoulou, Gianluca Dini

Software Defined Networking - Overview

• Key concepts

– Separation of Control plane and Data plane

– Centralized SDN controller and simple Switches

• Control plane

– Management of routes and network traffic

– Establishment of routes and flows

• Data plane

– Forwarding of network packets

– Based on flows and packet-matching rules

• OpenFlow as de-facto standard

– Control messages and APIs for controllers and switches

– Interoperability among different platforms and vendors

15 September 2016, Brno 2OMNeT++ Summit 2016

Software Defined Networking - Overview

15 September 2016, Brno 3OMNeT++ Summit 2016

Need for evaluation tools

15 September 2016, Brno 4OMNeT++ Summit 2016

• Quantitative assessment of SDN systems

– At design time (before deployment!)

– Avoid practically infeasible analytical models

• Network and communication performance

– Typical performance indicators (throughput, delay, …)

– Traffic models and quality of service

• SDN-based monitoring systems

– Specialized applications running on the SDN controller

– Anomaly detection and enforcement of mitigation policies

– Evaluate accuracy, reactiveness and effectiveness

• Cyber/physical security attacks

– Effects and impact on the network and applications

– Attack ranking based on effect severity

Our simulation tool

15 September 2016, Brno 5OMNeT++ Summit 2016

• Goal: design a simulation tool for SDN network

– Enable quantitative evaluation of performance and security

– Intended for network designers and researchers

• Built on top of INET/OMNeT++

– Support for SDN units and OpenFlow

– Support for evaluation of cyber/physical attacks

– Work in progress – Source code available at [1]

• This tool does NOT:

– Discover new attacks and vulnerabilities

– Evaluate feasibility and success rate of security attacks

[1] https://github.com/marco-tiloca-sics/INET_SDN_dev

INET support for SDN

15 September 2016, Brno 6OMNeT++ Summit 2016

• Some software modules previously developed [2]

– Basic SDN Controller and switch nodes

– Basic OpenFlow messages (exchange and processing)

– Basic packet-matching with installed flows (based on MAC address only)

• We have further added

– OpenFlow messages for flow management and update

– OpenFlow messages for statistic collection (basic OpenFlow method)

– Arbitrary complex packet-matching with installed flows

• Future extensions

– Advanced methods for statistic collection (e.g. sFlow)

– Modules supporting well-known Controller applications

[2] D. Klein and M. Jarschel, An OpenFlow extension for the OMNeT++ INET framework”, 6th International

ICST Conference on Simulation Tools and Techniques (SimuTools ’13), pp. 322–329, March 2013

SDN controller

15 September 2016, Brno 7OMNeT++ Summit 2016

• Host running specific SDN services

• Controller application

– Flow establishment

– Installation /update of flows on switches

– Statistic collection from switches

– Enforcement of traffic policies

– …

• Monitoring system

– Yet another dedicated application

– Traffic monitoring and anomaly detection

– Anomaly mitigation and neutralization

– (more details soon…)

SDN controller node

SDN switch

15 September 2016, Brno 8OMNeT++ Summit 2016

• Control plane

– Traditional-host stack

– Interaction with the SDN controller

• Data plane

– Collection of minimal stacks

– Packet matching and forwarding

Switch node

SDN-based monitoring systems

15 September 2016, Brno 9OMNeT++ Summit 2016

• Step 1 – Statistic collection from switches

– Basic OpenFlow method based on polling interval

– Alternative fine-grained methods e.g. sFlow (future work)

• Step 2 – Statistic analysis

– Dedicated application on the SDN controller

– Detection of anomalous traffic distribution (e.g. entropy-based)

– Detection of anomalous traffic volumes to/from network nodes

• Step 3 – Anomaly mitigation

– Flow installation/update on switches

– Isolation of anomalous/malevolent traffic

• Basic methods implemented as a proof-of-concept

Evaluation of security attacks

15 September 2016, Brno 10OMNeT++ Summit 2016

• Attack effects are simulated

– Attacks are assumed to be successfully performed

– There is no reproduction of their actual execution

– Only final effects are reproduced at runtime

• Quantitative evaluation

– Assess effects and impact on networks and applications

– Observe changes in performance indicators

– Consider an attack-free case as comparative baseline

• Core concepts first introduced in [3]

– Attack Specification Language and Attack Simulation Engine

– Current adaptation to SDN architectures and scenarios

– Enable attacks where switches are victims or exploited units

[3] M. Tiloca, F. Racciatti and G. Dini, Simulative Evaluation of Se-curity Attacks in Networked Critical
Infrastructures, The 2nd International Workshop on Reliability and Security Aspects for Critical Infrastructure
Protection (ReSA4CI), Lecture Notes in Computer Science LNCS 9338. Springer, pp. 314–323, September 2015

Core concept #1 - Attack Specification Language

15 September 2016, Brno 11OMNeT++ Summit 2016

• The user describes attacks to be evaluated

– Attacks are described in terms of their final effects

– No need to describe how attacks are actually executed

• Attack format

– List of atomic events to be injected at runtime

– Events modeled by high-level primitive functions

• Node primitives

– Intended for physical attacks

– End targets are network nodes

• Message primitives

– Intended for cyber attacks

– End targets are network packets

Core concept #1 - Attack Specification Language

15 September 2016, Brno 12OMNeT++ Summit 2016

• Physical attacks

– One node primitive each

• Cyber attacks

– List of message primitives

– Packet fields addressed by a dot notation

– Either conditional or unconditional

• Conditional cyber attacks

– Occur if a condition is verified as true

• Unconditional cyber attacks

– Occur periodically, from a specified time

from T nodes = <list of nodes> do {

filter (<condition>) <list of events>

}

from T every P do {

<list of events>

}

destroy() move()

drop() create()

clone() retrieve()

change() send() put()

Node primitives

Message primitives

Core concept #2 - Attack Simulation Engine

15 September 2016, Brno 13OMNeT++ Summit 2016

• Additional INET modules

– Global Event Processor

– Local Event Processor (1 per network node)

– Injection and processing of attack events at runtime

• Local Event Processor

– Gate by-pass between each pair of layers in the stack

– Intercept, chance and inject packets at different layers

– Transparent to the network nodes

• Global Event Processor

– Connected with all the Local Event Processors

– Enable complex attacks involving more nodes (e.g. wormhole)

Core concept #2 - Attack Simulation Engine

15 September 2016, Brno 14OMNeT++ Summit 2016

Adaptation to generic hosts and SDN Controllers

Core concept #2 - Attack Simulation Engine

15 September 2016, Brno 15OMNeT++ Summit 2016

Adaptation to SDN switches (work in progress)

Reproduction of attack effects

15 September 2016, Brno 16OMNeT++ Summit 2016

1. The user:

– Describes the attacks with the specification language

– Converts the description into XML (Python interpreter)

– Runs a new simulation importing the XML attack file

2. The Attack Simulation Engine:

– Parses the XML attack file

– Builds attack lists and starts attack timers

– Injects the specified attack events at runtime

3. Collection and analysis of results

– Attack-free scenario as comparison baseline

– Attack ranking and selection of countermeasures

USER

Attack description

INET

Injection of attack events

USER

Analysis of results

Reproduction of attack effects

15 September 2016, Brno 17OMNeT++ Summit 2016

• We have NOT:

– Modified event scheduling/handling in INET

– Modified applications or communication protocols

• The user is NOT required to:

– Implement actual adversaries and attack executions

– Modify applications and communication protocols

– Implement or customize INET components

• The user considers as starting points:

– The network scenario, applications and protocols

– The applications and service running on the SDN controller

– The security attacks to be evaluated

Example scenario

15 September 2016, Brno 18OMNeT++ Summit 2016

• Communication patterns

– C1S1 10 pkt/s

– C2S2 5 pkt/s

– C3S2 3.33 pkt/s

– C4S3 5 pkt/s

• Flow management policies

– Periodic expiration (every 30 s)

– Periodic statistic collection

– Privacy by design

• Anomaly detection

– Entropy-based w/ fixed threshold

– Bounded TX/RX rates per node

• Denial of Service attack

– Start at t = 90 s

– C3 sends additional packets to S2

– Attack injection rate R

Denial of Service - Results

15 September 2016, Brno 19OMNeT++ Summit 2016

• Different attack injection rates

– The stronger the attack, the more packets received by the victim

– Well-tuned monitoring system: attack always detected at t = 120 s

Denial of Service - Results

15 September 2016, Brno 20OMNeT++ Summit 2016

• Different interval for statistic collection

– Well-tuned monitoring system: attack always detected

– More frequent collections support a faster anomaly detection

Conclusion

15 September 2016, Brno 21OMNeT++ Summit 2016

• SDN simulation tool based on INET

– Evaluation of typical performance indicators

– Evaluation of SDN-based monitoring systems

– Evaluation of impact and effects of security attacks

• Attack evaluation

– Attack described by a high-level specification language

– Sequence of atomic events injected at runtime

– No need to implement actual adversaries or attack execution

• Future works

– Support for additional attacks (switches as victims or attack vectors)

– Evaluation of different classes of security attacks

– Support advanced methods for statistic collection

– Support well-known applications for SDN controllers

Thanks for your attention!

Marco Tiloca
marco@sics.se

http://www.sics.se/~marco

