Automating large-scale simulation and data analysis with OMNeT++

Antonio Virdis
(Carlo Vallati, Giovanni Nardini)
University of Pisa – Italy

OMNeT++ Summit 2016
OUTLINE

• Simulation Phases

• Factors vs Parameters

• Five main topics
Panelists

Red Corner

- Laura Marie Feeney
 (Uppsala University, Sweden)
- Kyeong Soo (Joseph) Kim
 (Xi'an Jiaotong-Liverpool University, Suzhou, China)

Blue Corner

- Andras Varga
- Rudolf Hornig
 (OMNeT++ Team)
• **Modeling**, development and validation/verification are completed.
• We have a pretty good idea on what to test.
• We have a pretty good idea on what to measure.
Simulation Phases

Scenario Generation

• What to simulate.

• How to perform simulation (single PC? Multi PC? How many in parallel?)

• How we write results? How we read them?

• Statistical analysis and result presentation.
Factors vs Parameters

• Non varying parameters

- packets_second = 50
- mobility_type = "linear"

• Varying parameters

- size = \{50, 100\}
- speed = \{1, 2\}
Factors and Simulations

<table>
<thead>
<tr>
<th>ID</th>
<th>size</th>
<th>speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>size</th>
<th>speed</th>
<th>repetition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

repeat = 3
Topic 0: Large Scale

• When does a simulation become “large”?

 • Lots of modules
 • Lots of metrics
 • Lots of factors

 Size of the single simulation run

 Number of simulation runs
Topic 1: Scenario Generation

- Are factors that important?
- Naming: ID based vs Factor Based

<table>
<thead>
<tr>
<th>ID</th>
<th>size</th>
<th>speed</th>
<th>repetition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

**.size= ${ 50 , \textcolor{red}{75}, 100 }$
Topic 2: Simulation execution

- Available: `opp_run` and `opp_runall`

- How to deal with a large number of runs (possibly on multiple cores)?

- Is AKAROA your favorite son (still)?

- Need for dynamic stop criterion? (e.g. statistical confidence reached)
Topic 3: Writing/Reading Results

• Available: scavetool + GUI interface (parsing)

• Work on files using regular expressions.
• Results are fully loaded into memory.

• Alternatives?
• Implementing a new writers?

• Connecting results to factors?

output-scalar-file = ${configname}-${runnumber}-${iterationvars}-${repetition}.sca
Topic 4: Result Analysis

- Built-in in OMNeT via GUI
- Connection with R, Octave, Matlab...
- Data representation: **gnuplot** interface anyone?
Topic 5: Unified Framework

Scenario Generator

Parameters

Launcher

Result files

Factors

Result files

Analyzer

values