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OMNeT++ Result Files

● Scalar and Vector files
● Contents:

○ Run description
○ Scalar file: (module, scalar, value), histograms, result attributes
○ Vector file: vector data: (module, vectorname, vector data = (timestamp+value)*)

● Current format:
○ Line-oriented text file, human-readable, easy to parse
○ Tools:

■ Analysis Tool in the IDE: charting, export

■ Scavetool: export into CSV and other formats (CSV can be imported into spreadsheets 
and other tools)

■ R plugin (GNU R is a language and environment for statistical computing)
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Pros and Cons of the Current Format

Pros:

● Human readable
● Easy to parse with command-line tools

Cons:

● Hard to use directly with third party tools
● Scalability issues when a lot of scalars are generated
● Hard to filter out the unnecessary scalars
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Alternative Format: SQLite

● SQLite: embedded, low-resource database engine
○ Database is a local file
○ Engine is a single C file (easy to add into existing programs)
○ Capable SQL support
○ Robust and proven (used inside Android, Firefox, etc.)
○ Command-line SQL console (with CSV export support)
○ wealth of GUI tools
○ Great integration with third-party tools. Can be used from Python, R and other statistical tools.
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File Format Comparison (text based)

version 2
run PureAlohaExperiment-12-20160902-11:36:24-19332
attr configname PureAlohaExperiment
attr mean 9
attr numHosts 10
attr repetition 0
param Aloha.host[*].iaTime "exponential(${mean=1,2,3,4,5..9 step 2}s)"

scalar Aloha.server duration 5400
scalar Aloha.server  collisionLength:mean 0.16657246074119
scalar Aloha.server  channelUtilization:last 0.18432244370657

statistic Aloha.server collisionLength:histogram
field count 508
field mean 0.15209864334356
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File Format Comparison (SQLite)
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Implementation

● Experimental implementation exists in the Technology Preview
● Extension classes that plug into envir

○ Can be selected from ini file, no other changes required

● Scavetool recognizes both text-based and SQLite files, all functionality is 
available for both formats

● IDE Analysis Tool relies on scave library, so it understands both formats

Example configuration:

outputscalarmanager-class = "omnetpp::envir::cSqliteOutputScalarManager"                                                                    
outputvectormanager-class = "omnetpp::envir::cSqliteOutputVectorManager"
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Using SQLite Result Files from OMNeT++ IDE

SQLite Result Files can be used from the IDE just like the text based format.
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Using SQLite Result Files Directly
There are several GUI tools to browse and process SQLite files: 
SQLite Browser, SQLiteman, ...

You can use SQL to select and organize the data you need. Everyone knows SQL, right?
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Using SQLite Result Files Directly 2

Filtering and some basic statistical functions are directly available in SQL...

… and some tools even support basic charting.
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Using SQLite Result File with CSV export

Scave Tool can export in CSV which can be further processed with other 3rd party 
tools like Libre Office Calc / Google Sheet Pivot Table or other statistical tools.

scavetool scalar -g name -F csv -O result.csv PureAlohaExperiment.sqlite.sca

This can be imported into a table which is further used as the source data for a 
pivot table.

NOTE: You can export the SQLite database directly by using the sqlite3 
command.

sqlite3 -csv PureAlohaExperiment.sqlite.sca \
    'select * from scalar' >result2.csv
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Using SQLite Result File with CSV export 2

CSV files can be loaded 
into spreadsheets to 
create Pivot Charts
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Using SQLite Result File from Python

Required packages

● Sqlite3

○ Access SQLite databases

● NumPy/SciPy

○ Numerical scientific computing

● MatPlotLib

○ Comprehensive 2D plotting
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Using SQLite Result File from Python 2

How to access data from Python.

    import sqlite3

    conn = sqlite3.connect(fileName)
    conn.row_factory = sqlite3.Row
    cur = conn.cursor()
    sql = "select numHosts, iaTime, avg(utilization) as utilization from ..."
    cur.execute(sql)
    rows = cur.fetchall()
    numHosts = [row["numHosts"] for row in rows]
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Using SQLite Result File from Python 3

Plot the same chart in Python:

    fig1 = plt.figure()
    ax1 = fig1.add_subplot(111)
    nh = sorted(list(set([row["numHosts"] for row in rows])))
    for n in nh:
        x = [row["iaTime"] for row in rows if row['numhosts']==n]
        y = [row["utilization"] for row in rows if row['numhosts']==n]
        ax1.plot(x, y, '-')
    ax1.set_xlabel('Mean packet interarrival time')
    ax1.set_ylabel('Utilization')
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Using SQLite Result File from Python 3

Charts rendered from the PureAlohaData in Python:
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Other Useful Python Libraries
● Pandas is a really nice library for working with statistical data -- tabular data, time series, panel data. Includes many builtin functions for data 

summaries, grouping/aggregation, pivoting. Also has a statistics/econometrics library.

● Larry provides labeled arrays that play nice with NumPy. Provides statistical functions not present in NumPy and good for data manipulation.

● Python-statlib is a fairly recent effort which combined a number of scattered statistics libraries. Useful for basic and descriptive statistics if 
you're not using NumPy or pandas.

● Statsmodels helps with tatistical modeling: Linear models, GLMs, among others.

● Scikits is a statistical and scientific computing package -- notably smoothing, optimization and machine learning.

● PyMC is for your Bayesian/MCMC/hierarchical modeling needs.

● PyMix for mixture models

● If speed becomes a problem, consider Theano. Theano is a Python library that allows you to define, optimize, and evaluate mathematical 
expressions involving multi-dimensional arrays efficiently.
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http://code.google.com/p/pandas/
http://pypi.python.org/pypi/la
http://pypi.python.org/pypi/la
http://code.google.com/p/python-statlib/
http://statsmodels.sourceforge.net/
http://statsmodels.sourceforge.net/
http://scikits.appspot.com/scikits
http://scikits.appspot.com/scikits
http://pypi.python.org/pypi/pymc/
http://pypi.python.org/pypi/pymc/
http://www.pymix.org/pymix/index.php?n=PyMix.Home
http://www.pymix.org/pymix/index.php?n=PyMix.Home
http://deeplearning.net/software/theano/


Python vs R? 

● Case for R: wealth of statistical packages available in R/CRAN
○ Drawback: special purpose programming language, unsuitable outside statistics

● Case for Python: General-purpose, hugely popular programming language 
with an extensive set of libraries; emerging as integration platform and 
preferred programming environment for many scientists

○ Drawback: statistical functionality is limited compared to R, but satisfactory for our purposes
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Comparison: SQLite vs Text

● File size: about the same or a bit smaller than the text based format
● Vector Recording performance: 2-2.5x slower (net writing speed)
● Read performance: Depends on the complexity of the query, but it can be 

optimized by adding indexes after recording the database
● Current optimizations employed

○ Vectors are written in batches
○ Bathces are committed in separate transaction
○ Pragma synchronize = off
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SQLite or not SQLite?

Perceived advantages

● More accessible: Browse and query with standard tools, using a standard 
language (SQL)

○ e.g. text-based result file format required special “omnetpp” R-plugin to get the data inside R. 
(R already has SQLite access library)

Possible drawbacks:

● Speed
○ vector recording performance is about 2-2.5x slower than text-based file format

○ in actual simulations, our experience with INET simulations has shown about 25% slowdown if 
ALL possible vectors are recorded (which is not common)
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Try it
Available in Technical Preview (see Aloha example)

Feedback is needed...

OMNeT++ Community Summit 2016, Brno University of Technology (FIT-BUT), Sept 15-16.
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