

FAKULTÄT FÜR INFORMATIK

Faculty of Informatics

Simulation of the IEEE 1588 Precision Time Protocol in OMNeT++

Basic concepts Clock Model Precision Time Protocol

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

Motivation:

Distributed real-time systems need a global time base

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Motivation:

Distributed real-time systems need a global time base

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Requirements depend on the application
 - Precision
 - Cost
 - Fault tolerance
 - ▶ ...

Motivation:

- Distributed real-time systems need a global time base
- Requirements depend on the application
 - Precision
 - Cost
 - Fault tolerance
 - ▶ ...

IEEE 1588 specifies the Precision Time Protocol (PTP)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

PTP provides a large feature set

Design space exploration is challenging

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

PTP provides a large feature set

- Design space exploration is challenging
- Experimenting with real hardware is expensive
 - Prohibitive for experiments with larger networks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

PTP provides a large feature set

- Design space exploration is challenging
- Experimenting with real hardware is expensive
 - Prohibitive for experiments with larger networks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \Rightarrow Use **simulation** to avoid costs and provide flexibility

Introduction

Motivation Problem statement

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

Simulation goal

Provide a tool for PTP design space exploration

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Simulation goal

Provide a tool for PTP design space exploration

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Requirements:

- simple
- efficient
- realistic

Problem statement

Simulation components:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Problem statement

Simulation components:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

Simulation components:

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

Simulation components:

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Network components

Prior work suggets usage of

OMNeT++

 INET library provides common network components

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Clocks

Various noise sources:

- Random noise
- Deterministic influences
 - Environment, Aging, Drift, ...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Clocks

Various noise sources:

Random noise

- Deterministic influences
 - ► Environment, Aging, Drift,

・ロト・西ト・田・・田・ ひゃぐ

PTP Components

- PTP Hardware
 - Timestamping NICs, ...
- Software Components
 - PTP Stack
 - Clock Servo

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Problem Statement (revised)

- Implement PTP in OMNeT++
- Provide realistic clock noise

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

Basic concepts Clock Model Precision Time Proto

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

The model of a **digital clock** consists of two parts:

- Oscillator
- Counter

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Both parts may suffer from noise

Modified clock model:

- Oscillator and counter are perfect
- Additional components:
 - Noise generator
 - Correction stage

Frequency Stability Analysis

Discipline of judging clock stability

Important attribute:

Time Deviation (TD)

Instantaneous time departure from a nominal time

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

 \rightarrow How wrong is this clock (now)?

Visualization of Time Deviation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Combined Powerlaw Noise

Figure: Combination of different PLNs

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

Precision Time Protocol

- Network based clock synchronization
- Compromise between cost and precision

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

 Network nodes are called clocks

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

- Network nodes are called clocks
- Clocks have ports

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- Network nodes are called clocks
- Clocks have ports
- Ports have states

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Network nodes are called clocks
- Clocks have ports
- Ports have states
- Ports communitate via messages

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
PTP Concepts

- Network nodes are called clocks
- Clocks have ports
- Ports have states
- Ports communitate via messages
- Nodes can
 - timestamp messages
 - scale their local clock

Clock hierarchy

Offset estimation

Configuration

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

- Clock hierarchy
 - Best Master Clock algorithm
 - Root is called grand master
- Offset estimation

Configuration

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- Clock hierarchy
 - Best Master Clock algorithm
 - Root is called grand master
- Offset estimation
 - Timestamp broadcast
 - Path Delay measurement
- Configuration

- Clock hierarchy
 - Best Master Clock algorithm
 - Root is called grand master
- Offset estimation
 - Timestamp broadcast
 - Path Delay measurement
- Configuration

- Clock hierarchy
 - Best Master Clock algorithm
 - Root is called grand master
- Offset estimation
 - Timestamp broadcast
 - Path Delay measurement
- Configuration

Introduction Motivation Problem statement

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

- Convert global real-time to locale estimate
 - Real-time: perfect, continous
 - Estimate:

non-perfect, discrete

AdjustableClock

- Provide abstraction on top of HardwareClock
- Add linear correction

ScheduleClock

- Locale alternative to scheduleAt()
- Internal event queue

Introduction Motivation Problem statement

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

PTP Stack

Basic PTP node

 Architecture is based on StandardHost and EthernetSwitch from INET library

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

PTP Stack

PTP stack

- Implements core of IEEE 1588
 - Message types
 - BMC algorithm
 - Port states
 - Data sets
 - Clock types
 - Delay mechanisms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▶ ...

PTP Ethernet Mapping

PTP Ethernet Mapping

Annex F of IEEE 1588

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

PTP over Ethernet

PTP Clock servo

Clock servo

- Generic interface
- 1 implementation:
 - PI controller

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Logical Link Control

Logical Link Control

- Layer 2 access
- Move frames to correct application based on EtherType

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

PTP NIC

PTP NIC

- Clock
- PHY
- ► MAC

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Introduction Motivation Problem statement

Basic concepts Clock Model Precision Time Protocol

Implementation Clock Model for OMNeT++ PTP in OMNeT++

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Conclusion

Current project state

- Code released as GPL
 - github.com/w-wallner
- Thesis finished
 - Simulation of time-synchronized networks using IEEE 1588-2008 [7]
- Papers
 - ISPCS¹ 2016, Stockholm
 - OMNeT++ Community Summit 2016, Brno

Future work

- PTP features
- Hardware properties
 - Deterministic clock influences

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへぐ

- Switch models (queues)
- More clock servos

Conclusion

- Simulation approach is feasible
 - Clocks can be implemented efficiently
 - Assembling PTP networks is easy with Graphical User Interface (GUI)

- Simulation has already been useful for teaching PTP
- There is strong interest for such a simulation

Do you have any questions?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ���

Thanks for your attention!

・ロト・日本・ キャー キャー しゃく 日 ・ うらつ

Acronyms I

- AAS Austrian Academy of Sciences
- ADEV Allan Deviation
- AVAR Allan Variance
- BC Boundary Clock
- BMC Best Master Clock
- DES Discrete Event Simulation
- E2E End-to-End
- FFM Flicker Frequency Modulation
- FPM Flicker Phase Modulation
- **FSA** Frequency Stability Analysis
- GUI Graphical User Interface
- LLC Logical Link Control
- NIC Network Interface Card
- OC Ordinary Clock
- OMNeT++ Objective Modular Network Testbed in C++
- P2P Peer-to-Peer

PI	proportional-integral
PLN	Powerlaw Noise
PSD	Power Spectral Density
PTP	Precision Time Protocol
RW	Random Walk
тс	Transparent Clock
TD	Time Deviation
WFM	White Frequency Modulation
WPM	White Phase Modulation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

References I

John C. Eidson

Measurement, Control, and Communication Using IEEE 1588 Springer, 2006

Georg Gaderer, et al

An Oscillator Model for High-Precision Synchronization

Protocol Discrete Event Simulation

Proceedings of the 39th Annual Precise Time and Time Interval Meeting, 2007

IEEE Std 1139-2008

IEEE Standard Definitions of Physical Quantities for

Fundamental Frequency and Time Metrology - Random

Instabilities

2009

References II

- N. Jeremy Kasdin and Todd Walter
 <u>Discrete Simulation of Power Law noise</u>
 Proceedings of the 1992 IEEE Frequency Control Symposium, 1992
 - William J. Riley

Handbook of Frequency Stability Analysis NIST Special Publication 1065, 2008

📔 Enrico Rubiola

The Leeson effect - Phase noise in quasilinear oscillators

ArXiv Physics e-prints, 2005

W. Wallner

Simulation of Time-synchronized Networks using IEEE 1588-2008

Master's thesis, Faculty of Informatics, Vienna University of Technology, 2016

Dropped Slides

・ロト・日本・ キャー キャー しゃく 日 ・ うらつ

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Reminder: Any simulation is just as good as its models.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Possible risks of simulation include:

- ► Too naive clock model → false positives
- ► Clumsy control loop → false negatives

- We need to justify the stability of clocks
- This discipline is called Frequency Stability Analysis (FSA)

- Literature:
 - Handbook of Frequency Stability Analysis[5]
 - IEEE 1139 [3] (Standard definitions for random instabilities)
Two important measures for description of noise:

 $\begin{array}{ll} S_y(f) & \mbox{Power Spectral Density (PSD)} \\ & \mbox{One-sided PSD of } y(t) \\ & \mbox{Useful for frequency domain analysis} \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Two important measures for description of noise:

 $S_u(f)$ Power Spectral Density (PSD) One-sided PSD of y(t)Useful for frequency domain analysis

 $\sigma_{11}^2(\tau)$ Allan Variance (AVAR)

Special variance to measure stability of clocks Useful for time domain analysis

Random noise in oscillators has a special PSD shape:

 $S_y(f) \propto f^\alpha$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Definition This is called **Powerlaw Noise (PLN)**

Special cases for α :

▶ 2	WPM	White Phase Modulation
▶ 1	FPM	Flicker Phase Modulation
▶ 0	WFM	White Frequency Modulation
▶ -1	FFM	Flicker Frequency Modulation
▶ -2	RW	Random Walk

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Powerlaw Noise examples

Power Spectral Density

WPM

Fractional Frequency Deviation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Problem: standard variance does not converge

Problem: standard variance does not converge

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Alternative: Allan Variance (AVAR)

- Problem: standard variance does not converge
- Alternative: Allan Variance (AVAR)
- Equally widespread: Allan Deviation (ADEV)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Problem: standard variance does not converge
- Alternative: Allan Variance (AVAR)
- Equally widespread: Allan Deviation (ADEV)
- Example:

(日)

SQA

Relationship AVAR/PSD I

PLNs have characteristic AVAR:

Image was taken from [6].

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Table B.2 of IEEE 1139[3]:

PLN	$S_y(f)$	$\sigma_y^2(\tau)$
RW	$h_{-2} \cdot f^{-2}$	$A \cdot h_{-2} \cdot \tau^1$
FFM	$h_{-1} \cdot f^{-1}$	$B \cdot h_{-1} \cdot \tau^0$
WFM	h₀ · f ⁰	$C \cdot h_0 \cdot \tau^{-1}$
FPM	$h_1 \cdot f^1$	$D \cdot h_1 \cdot \tau^{-2}$
WPM	$h_2 \cdot f^2$	$E \cdot h_2 \cdot \tau^{-2}$

- A, B and C are constants
- D and E depend on certain parameters

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Different timestamp modes:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

1-step clocks

2-step clocks

Different timestamp modes:

- 1-step clocks
 - Capable of timestamping outgoing frames on-the-fly

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Needs explicit hardware support
- 2-step clocks

Different timestamp modes:

- 1-step clocks
 - Capable of timestamping outgoing frames on-the-fly

- Needs explicit hardware support
- 2-step clocks
 - Not capable to timestamp on-the-fly
 - Use FollowUp messages

PTP - State machine

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

3 non-transient states:

- MASTER
- SLAVE
- PASSIVE

- Clocks decide periodically about port states
- Next port state depends on
 - received Announce messages
 - timeouts
 - synchronization errors
 - ▶ ...
- Best Master Clock (BMC) is eventually consistent

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

BMC results in a forest

At first, all nodes start in LISTENING

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

PTP - Simple BMC example II

They see an idle PTP network, and try to become MASTER

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

 As the nodes start to see Announce messages, some ports change to SLAVE

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Final hierarchy

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

- Example network with 1 good clock
- Passive states break rings

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

900

- Example network 2 excellent clocks
- Passive states divide network

Two tasks:

- Timestamp distribution
- Delay estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Ordinary Clock (OC)

- 1 port
- typical end node

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Boundary Clock (BC)

- multiple ports
- otherwise similar to OC

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Transparent Clock (TC)

- multiple ports
- tries to not influence the PTP network
 - residence time correction
- introduced in IEEE 1588-2008

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のくぐ

End-to-End (E2E)

Peer-to-Peer (P2P)

- E2E: Slave measures and corrects full distance
- P2P: Each nodes measures and corrects small part

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のくぐ

- Advantages E2E:
 - Expected precision
- Advantages P2P:
 - Reduced overhead
 - Fast reaction on path change

PLN simulation - Combining PSDs I

Combined PSD results in expected AVAR

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんぐ

Austrian Academy of Sciences (AAS)

Prior work:

- Was engaged in PTP and PLN simulation
- Several publications, e.g.
 - Gaderer, et al An Oscillator Model for High-Precision Synchronization Protocol Discrete Event Simulation, 2007[2]

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のくぐ

Served as inspiration

Prior work: Kasdin/Walter Method

 N. Jeremy Kasdin and Todd Walter, Discrete Simulation of Power Law noise, 1992[4]

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のくぐ

- Generic method for PLN generation
- Basis for AAS papers
- Approach: Filtering of white noise

Kasdin/Walter approach: Filtering of white noise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- Problem solved theoretically by KW-approach
- Too complex for practical simulation purpose
 - Maximum simulation time is limited
 - Inefficient for Discrete Event Simulation (DES)

Maximum simulation time

- Combining PSDs with different f_s
- IIR filters for even α

Efficiency

Skip unneeded PSD contributions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

PLN simulation - Combining PSDs

Combining PSDs

PLN simulation - Benchmark I

- Time Deviation at different sampling rates
 - Overall clock wander determined by Random Walk (RW)
 - High frequency noise is there when needed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで
PLN simulation - Benchmark II

- Simulation speed $\propto 1/f_s$
- Results on my systems (Intel Core i7 2.00GHz):

▲ロト▲母ト▲ヨト▲ヨト ヨーのへで

PLN simulation - Benchmark III

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

PTP NIC - MAC

PTP MAC

► Timestamps

Event messages need ingress and egress timestamps

Residence time correction

When acting as a TC, the MAC must correct the residence time of outgoing frames

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のくぐ

PTP NIC - Clock

Clock

- Timestamps
 Used to timestamp events
- Scalable Controlled by Clock Servo
- Event scheduling
 PTP stack relies on it for timeouts

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

 $\Rightarrow \textbf{Clock Noise}$

Node Symbols

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Example network

Debugging and Logging

Debugging and Logging

Figure: Port States and State Decisions

Message Symbols

PDelayRequest

PDelayResponse

PDelayResponseFU

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー のくぐ

Management

Signaling

Example network with PTP devices and standard office gear.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Experiment A1: Best Master Clock Algorithm

Best Master Clock Algorithm

Figure: Example network from Eidson's book[1].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Best Master Clock Algorithm

Figure: Simulation of the example network from Eidson's book.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

LibPLN implements 2 example oscillators

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Experiment 1: Sync Interval

Simple test network

Parameter Study: Sync Interval

Parameter Study: Sync Interval

Figure: Mean value of the offset

(日)

Parameter Study: Sync Interval

Parameter Study: Sync Interval

²|Max – Min|

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Experiment: Path Asymmetry

Configuration

- Network with 2 PTP nodes
- 3 Configurations
 - No path asymmetry
 - Path asymmetry without correction

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Path asymmetry with correction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで