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Simulation Components: Network

Network components
I Prior work suggets usage of

OMNeT++

I INET library provides common
network components
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Simulation Components: PTP

PTP Components
I PTP Hardware

I Timestamping NICs, . . .

I Software Components
I PTP Stack
I Clock Servo



Problem statement: Summary

Problem Statement (revised)
I Implement PTP in OMNeT++
I Provide realistic clock noise
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Clock model I

The model of a digital clock consists of two parts:

I Oscillator
I Counter

I Both parts may suffer from noise



Clock model II

Modified clock model:

I Oscillator and counter are perfect
I Additional components:

I Noise generator
I Correction stage



Basic definitions

Frequency Stability Analysis
Discipline of judging clock stability

Important attribute:

Time Deviation (TD)
Instantaneous time departure from a nominal time

→ How wrong is this clock (now)?



Visualization of Time Deviation



Combined Powerlaw Noise

Figure: Combination of different PLNs
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PTP - Intro

Precision Time Protocol
I Network based clock synchronization
I Compromise between cost and precision
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Clock model for OMNeT++

Clock model hierarchy
I Different modules for

different tasks



Clock model for OMNeT++

HardwareClock
I Convert global real-time

to locale estimate
I Real-time:

perfect, continous
I Estimate:

non-perfect, discrete



Clock model for OMNeT++

TdGen
I Provide the Time

Deviation (TD) for a given
point in time

I Future TD values may be
estimates



Clock model for OMNeT++

AdjustableClock
I Provide abstraction on

top of HardwareClock
I Add linear correction



Clock model for OMNeT++

ScheduleClock
I Locale alternative to
scheduleAt()

I Internal event queue
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PTP Stack

Basic PTP node
I Architecture is based on
StandardHost and
EthernetSwitch from
INET library



PTP Stack

PTP stack
I Implements core of IEEE 1588

I Message types
I BMC algorithm
I Port states
I Data sets
I Clock types
I Delay mechanisms
I . . .



PTP Ethernet Mapping

PTP Ethernet Mapping
I Annex F of IEEE 1588
I PTP over Ethernet



PTP Clock servo

Clock servo
I Generic interface
I 1 implementation:

I PI controller



Logical Link Control

Logical Link Control
I Layer 2 access
I Move frames to correct

application based on EtherType



PTP NIC

PTP NIC
I Clock
I PHY
I MAC
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Project State

Current project state
I Code released as GPL

I github.com/w-wallner

I Thesis finished
I Simulation of time-synchronized networks using

IEEE 1588-2008 [7]
I Papers

I ISPCS1 2016, Stockholm
I OMNeT++ Community Summit 2016, Brno

1Conference with a focus on Precision Time Protocol (PTP)

github.com/w-wallner


Outlook

Future work
I PTP features
I Hardware properties

I Deterministic clock influences
I Switch models (queues)

I More clock servos



Conclusion

Conclusion
I Simulation approach is feasible

I Clocks can be implemented efficiently
I Assembling PTP networks is easy with Graphical User

Interface (GUI)

I Simulation has already been useful for teaching PTP
I There is strong interest for such a simulation



Questions

I Do you have any questions?



Thanks

Thanks for your attention!



Acronyms I

AAS Austrian Academy of Sciences
ADEV Allan Deviation
AVAR Allan Variance
BC Boundary Clock
BMC Best Master Clock
DES Discrete Event Simulation
E2E End-to-End
FFM Flicker Frequency Modulation
FPM Flicker Phase Modulation
FSA Frequency Stability Analysis
GUI Graphical User Interface
LLC Logical Link Control
NIC Network Interface Card
OC Ordinary Clock
OMNeT++ Objective Modular Network Testbed in C++
P2P Peer-to-Peer



Acronyms II

PI proportional-integral
PLN Powerlaw Noise
PSD Power Spectral Density
PTP Precision Time Protocol
RW Random Walk
TC Transparent Clock
TD Time Deviation
WFM White Frequency Modulation
WPM White Phase Modulation
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Problem statement

Reminder: Any simulation is just as good as its models.

Possible risks of simulation include:
I Too naive clock model→ false positives
I Clumsy control loop→ false negatives



Frequency Stability Analysis - Intro

I We need to justify the stability of clocks
I This discipline is called Frequency Stability Analysis (FSA)

I Literature:
I Handbook of Frequency Stability Analysis[5]
I IEEE 1139 [3]

(Standard definitions for random instabilities)



Clock Noise: Description

Two important measures for description of noise:

Sy(f) Power Spectral Density (PSD)
One-sided PSD of y(t)
Useful for frequency domain analysis

σ2y(τ) Allan Variance (AVAR)
Special variance to measure stabilty of clocks
Useful for time domain analysis
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Powerlaw Noise I

Random noise in oscillators has a special PSD shape:

Sy(f) ∝ fα

Definition
This is called Powerlaw Noise (PLN)



Powerlaw Noise II

Special cases for α:

I 2 WPM White Phase Modulation
I 1 FPM Flicker Phase Modulation
I 0 WFM White Frequency Modulation
I -1 FFM Flicker Frequency Modulation
I -2 RW Random Walk



Powerlaw Noise examples
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I Problem: standard variance does not converge

I Alternative: Allan Variance (AVAR)
I Equally widespread: Allan Deviation (ADEV)
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Relationship AVAR/PSD I
PLNs have characteristic AVAR:

Image was taken from [6].



Relationship AVAR/PSD II

Table B.2 of IEEE 1139[3]:

PLN Sy(f) σ2y(τ)

RW h−2 · f−2 A · h−2 · τ1
FFM h−1 · f−1 B · h−1 · τ0
WFM h0 · f0 C · h0 · τ−1
FPM h1 · f1 D · h1 · τ−2
WPM h2 · f2 E · h2 · τ−2

I A, B and C are constants
I D and E depend on certain parameters



PTP - Timestamp modes

Different timestamp modes:
I 1-step clocks

I Capable of timestamping outgoing frames on-the-fly
I Needs explicit hardware support

I 2-step clocks

I Not capable to timestamp on-the-fly
I Use FollowUp messages
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PTP - State machine

3 non-transient states:
I MASTER

I SLAVE

I PASSIVE



PTP - Best Master Clock algorithm

I Clocks decide periodically about port states
I Next port state depends on

I received Announce messages
I timeouts
I synchronization errors
I . . .

I Best Master Clock (BMC) is eventually consistent
I BMC results in a forest



PTP - Simple BMC example I

I At first, all nodes start in LISTENING



PTP - Simple BMC example II

I They see an idle PTP network, and try to become MASTER



PTP - Simple BMC example III

I As the nodes start to see Announce messages, some ports
change to SLAVE



PTP - Simple BMC example IV

I Final hierarchy



BMC example: rings

I Example network with 1 good clock
I Passive states break rings



BMC example: 2 excellent clocks

I Example network 2 excellent clocks
I Passive states divide network



PTP - Synchronization principle

Two tasks:
I Timestamp distribution
I Delay estimation



PTP - Clock types I

Ordinary Clock (OC)

I 1 port
I typical end node



PTP - Clock types II

Boundary Clock (BC)

I multiple ports
I otherwise similar to OC



PTP - Clock types III

Transparent Clock (TC)

I multiple ports
I tries to not influence the PTP network

I residence time correction

I introduced in IEEE 1588-2008



PTP - Delay mechanisms I

I End-to-End (E2E)

I Peer-to-Peer (P2P)



PTP - Delay mechanisms II

I E2E: Slave measures and corrects full distance
I P2P: Each nodes measures and corrects small part

I Advantages E2E:
I Expected precision

I Advantages P2P:
I Reduced overhead
I Fast reaction on path change



PLN simulation - Combining PSDs I

I Combined PSD results in expected AVAR



PLN simulation - Prior work

Austrian Academy of Sciences (AAS)
Prior work:

I Was engaged in PTP and PLN simulation
I Several publications, e.g.

I Gaderer, et al
An Oscillator Model for High-Precision Synchronization
Protocol Discrete Event Simulation, 2007[2]

I Served as inspiration



PLN simulation - Prior work

Prior work: Kasdin/Walter Method
I N. Jeremy Kasdin and Todd Walter,

Discrete Simulation of Power Law noise, 1992[4]
I Generic method for PLN generation
I Basis for AAS papers
I Approach: Filtering of white noise



PLN simulation - Prior work

Kasdin/Walter approach: Filtering of white noise



PLN simulation - Challenges

I Problem solved theoretically by KW-approach

I Too complex for practical simulation purpose
I Maximum simulation time is limited
I Inefficient for Discrete Event Simulation (DES)



PLN simulation - Approaches

Maximum simulation time
I Combining PSDs with different fs
I IIR filters for even α

Efficiency
I Skip unneeded PSD contributions



PLN simulation - Combining PSDs
Combining PSDs



PLN simulation - Benchmark I

I Time Deviation at different sampling rates
I Overall clock wander determined by Random Walk (RW)
I High frequency noise is there when needed



PLN simulation - Benchmark II

I Simulation speed ∝ 1/fs
I Results on my systems (Intel Core i7 2.00GHz):



PLN simulation - Benchmark III

I Correct ADEV for any sampling rate



PTP NIC - MAC

PTP MAC
I Timestamps

Event messages need ingress
and egress timestamps

I Residence time correction
When acting as a TC, the MAC
must correct the residence time
of outgoing frames



PTP NIC - Clock

Clock
I Timestamps

Used to timestamp events
I Scalable

Controlled by Clock Servo
I Event scheduling

PTP stack relies on it for
timeouts

⇒ Clock Noise



Node nodes

Node Symbols



Example network

Example network



Debugging and Logging

Debugging and Logging

Figure: Port States and State Decisions



Message symbols

Message Symbols



Example network

Example network with PTP devices and standard office gear.
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Best Master Clock Algorithm

Figure: Example network from Eidson’s book[1].



Best Master Clock Algorithm

Figure: Simulation of the example network from Eidson’s book.



Example Oscillators

I LibPLN implements 2 example oscillators



Experiment 1: Sync Interval

Experiment 1: Sync Interval



Simple Network

Simple test network



Parameter Study: Sync Interval

Parameter Study: Sync Interval

Figure: Mean value of the offset



Parameter Study: Sync Interval

Parameter Study: Sync Interval

Figure: Jitter2 of the offset

2|Max−Min|



Experiment: Path Asymmetry

Experiment: Path Asymmetry



Asymmetry

Configuration
I Network with 2 PTP nodes
I 3 Configurations

I No path asymmetry
I Path asymmetry without correction
I Path asymmetry with correction



Asymmetry
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