Implementation of the SWIM Mobility Model in OMNeT++

Asanga Udugama¹, Behruz Khalilov¹, Anas bin Muslim¹, Anna Förster¹ and Koojana Kuladinithi²

- 1 University of Bremen, Germany
- 2 Hamburg University of Technology, Germany

OMNeT++ Community Summit 2016

Brno University of Technology, Czech Republic

September 15 - 16, 2016

Universität Bremen

Contents

- Motivation
- SWIM Mobility Model
- Mobility Models in OMNeT++
- SWIM Implementation in OMNeT++
- Evaluations
- Summary and Future Work

Motivation

Motivation

- Internet of Things (IoT)
 - Over 200 billion devices by 2020 [1]
- Focus of research
 - Opportunistic Networking
- IoT Scenarios
 - Many human oriented scenarios
 - e.g., Smartphone user enabling health monitoring
- Nature of human oriented Scenarios
 - Mobile users
- Scale of Devices in the IoT Large
 - Require simulators OMNeT++

Motivation

- OMNeT++ has a number of Mobility Models
 - Random Way Point, Random Direction, etc.
- Human mobility has different characteristics
- Small Worlds in Motion (SWIM) is a Mobility Model that captures these characteristics [2]
- Focus: Develop the SWIM Model to simulate human oriented scenarios
 - Useful for the OMNeT++ community

SWIM Mobility Model*

* A. Mei and J. Stefa, *SWIM: A Simple Model to Generate Small Mobile Worlds*, IEEE INFOCOM, 2009

SWIM

- Based on 2 intuitions of human mobility
 - Regularly visited locations are near to home and,
 - A far location is visited due to its popularity
- Categorizes locations as,
 - Home (Neighboring) location
 - Visiting locations
- Next location selection based on weights

 $w(C) = \alpha \cdot distance(h_A, C) + (1 - \alpha) \cdot seen(C)$

- w(C) weight assigned to cell C by node A;
- $distance(h_A, C)$ function of distance from node A to cell C;
- seen(C) number of nodes that node A encountered at cell C;
- α constant in the range of [0; 1].

SWIM contd...

- Weight function
 - Increases with popularity of a place,
 - Decreases with the distance from the home location
- Empirically verified

Mobility Models in OMNeT++

Mobility Models in OMNeT++

- OMNeT++ has a number of models
 - Available in the INET framework
- Simulation of mobility using 2 methodologies
 - Synthetic models artificially generated mobility patterns
 - Traces mobility pattern data collected from actual movements
- Synthetic Models classified based on the nature of movement
 - Deterministic models devoid of stochasticity
 - Random models stochasitic movement patterns
- SWIM Synthetic model with random destination selection

Mobility Architecture in OMNeT++

- IMobility Interface implemented by mobility models
 - Other models invoke methods in interface to obtain information
- OMNeT++ Base Mobility Implementations
 - Extensible classes to include mobility model specific functionality
 - e.g., LinearSegmentsMobilityBase linear movement and moves in segments
- SWIM Extends the LinearSegmentsMobilityBase model

SWIM Implementation in OMNeT++

SWIM Implementation Requirements

- Basic functionality required
 - Constant speed of mobility,
 - Linear movements
- SWIM extends LineSegmentsMobilityBase
- Functionality separation in a node
 - Initialization Phase setup activities
 - Mobility Phase activities related to movement of node

SWIM Implementation Flow Chart

SWIM Configurable Parameters

- neighbourLocationLimit distance to determine location separation
- noOfLocations locations to create from movement area
- alpha SWIM α value
- initialX, initialY, initialZ initial coordinates of a node
- maxAreaX, maxAreaY, maxAreaZ movement area
- waitTime pause time after reaching a destination
- speed velocity of node when moving

Evaluations

Evaluations

niversität Bremen

- Focused on how destinations are selected
 - Emphasis on Visiting Locations (lower α)
 - Emphasis on **Neighboring Locations** (higher α)

Summary and Future Work

Summary

- SWIM an empirically validated mathematical model to model human mobility, proposed by authors of [2]
- Based on 2 intuitions related to human mobility
 - Regularly travelled locations lie close to home
 - Further locations are visited due to their popularity
- Purpose of this work implementation of the SWIM model in OMNeT++
- Currently available at Github (search: SWIM mobility)

Future Work

- Our work with SWIM use in opportunistic networks
- Organic Data Dissemination (ODD) Communication Model ([3])
 - Opportunistic networks
 - Internet of Things
- ODD Currently as an OMNeT++ model
- SWIM is ideally suited for evaluating ODD but not all scenarios
- Key lacking area reactiveness
 - Destinations change (while in motion) due to external events
 - e.g., an emergency, change of plans

References

References

[1] IDC IVIEW, *Digital Universe in 2020*, December 2012

[2] A. Mei and J. Stefa, *SWIM: A Simple Model to Generate Small Mobile Worlds*, IEEE INFOCOM, 2009

[3] A. Foerster et al, *A Novel Data Dissemination Model for Organic Data Flows*, MONAMI 2015, September 2015, Santander Spain

Thank You.

Questions?

