## Community-based Mobility Model and Probabilistic ORBIT Mobility Model in OMNeT++

Vishnupriya Kuppusamy, Leonardo Sarmiento, Asanga Udugama and Anna Förster

Communication Networks (ComNets), University of Bremen



OMNeT++ Community Summit 2018 University of Pisa, Pisa, Italy, September 05 - 07





### Motivation

- Performance Analysis of Opportunistic Networks (OppNets)
  - Real tests beds scalability
  - Simulation models
- Mobility models
  - Real-world traces
  - Synthetic models
- OMNeT++ RWP, RW, SWIM, and BonnMotion for traces
- Less traces available need for realistic Mobility models based on Sociality and individual schedules





#### Overview

- Mobility models
  - Community-based Mobility Model (CMM)
  - Probabilistic ORBIT
- Implementations in OMNeT++
- Evaluations and results
- Conclusion





### Community-based Mobility Model (CMM)

- Users with strong social ties
  - geographically co-located from time to time
  - move towards or within the same region
  - strongly associated nodes move as a community
- Social network interaction matrix
- Connectivity matrix
- Form communities
- Communities assigned to physical locations in simulation area called grids



# **Community-based Mobility Model**

#### Subsequent node movements –> influenced by the social interactions

sum of interaction indicators of relationships between *i* and other hosts in the grid

social attractivity factor of a grid for a host *i* 

Total number of hosts in the grid





# Flow chart - CMM



- Initialization phase
  - Load or create interaction matrix
  - Create communities
  - Assign communities to grids
- Mobility Phase
  - Calculate social attractivity
  - Move





## Probabilistic ORBIT Mobility Model

- Most users move in a terrain consisting of certain locations with different probabilities
- Macro-mobility model; not concerned about exact position co-ordinates but approximate locations
- Different movement patterns for users individual schedules, weekdays, weekends – configurable
- Every user has a set of assigned locations and move around these locations with different probabilities





# Flow chart - Orbit



versität Bremen

- Initialization phase
  - Get number of hubs, hub stay time, hub size
  - Set intra-hub and inter-hub speed
- Mobility Phase
  - Next hub location of node based on probability
  - Move to a random position in the selected hub



# **Evaluation setup**

| Parameter                          | RWP                             | CMM                               | ORBIT                                                                 |
|------------------------------------|---------------------------------|-----------------------------------|-----------------------------------------------------------------------|
| Nodes                              | 100                             | 100                               | 100                                                                   |
| Area                               | $5 \text{ km} \ge 5 \text{ km}$ | $5 \text{ km} \ge 5 \text{ km}$   | 5  km x  5  km                                                        |
| Simulation time                    | 24 hours                        | 24 hours                          | 24 hours                                                              |
| Community size / Hub size          | -                               | $200 \text{ m} \ge 200 \text{ m}$ | $200 \text{ m} \ge 200 \text{ m}$                                     |
| Speed                              | 1 - 6 meters/sec                | 1 - 6 meters/sec                  | intra-hub speed: 1 - 3 meters/sec<br>inter-hub speed: 1- 6 meters/sec |
| Mobility update interval           | 1 second                        | 1 second                          | 1 second                                                              |
| Hub stay time                      | -                               | -                                 | 50 - 100 seconds                                                      |
| Timeout / Reconfiguration interval | -                               | 8 hours                           | 8 hours                                                               |

Table 1: Simulation Configuration for RWP, CMM and ORBIT mobility models

- Random-waypoint to compare the differences
- Reconfiguration interval of 8 hours
- Node movements refreshed for CMM and ORBIT and not RWP





# **Results - Trajectories**



Movements for reconfiguration interval of 8 hours and simulation time of 24 hrs





## **Results - Trajectories**

niversität Bremen





## Results – Total number of contacts







## Results – Contact Times (Durations)





## Results – Time between contacts





iversität Bremen

### Results – Community size / Hub size



CMM

ORBIT





# **Conclusion and Future Work**

- CMM and ORBIT implementations in OMNeT++
- Functions verified using simulation configurations
- Use traces in the future to evaluate these models





#### Thank You



