

Institute of Applied Microelectronics and Computer Engineering

A Simulation Model of IEEE 802.1AS gPTP for Clock Synchronization in OMNeT++

Henning Puttnies, Peter Danielis, Enkhtuvshin Janchivnyambuu, Dirk Timmermann University of Rostock, Germany

1. Motivation

- Real-time Ethernet systems
 - No open standard established
 - Only proprietary solutions (expensive)

Traditio et Innovatio

"Ethernet#

- A standard-based approach is required
- IEEE 802.1 Time-Sensitive Networking (TSN) Task Group
- gPTP is a part of TSN standards (for sync)

2. Basics

Overview of gPTP protocol

- Types of time-aware systems
 - End stations, bridges
- Types of ports
 - Master, slave, passive
- Time-aware systems only communicate gPTP information directly with other time-aware systems
 - ➔ Hop by hop synchronization

2. Basics

Best master clock selection (BMCS)

Traditio et Innovatio

- All time-aware systems participate in BMCS
- Announce message: time-synchronization spanning tree vector
- Automatic changeover to a secondary grandmaster

Traditio et Innovatio

2. Basics

Propagation delay measurement

2. Basics

- Propagation delay measurement
 - Rate ratio

2. Basics: Transport of Sync. Information

- correctionField: Composed of propagation delay and residence time
- Slave: preciseOriginTimestamp + <delayToGM> → Synced to GM time

Scope of the project

gPTP simulation model in OMNeT++ using the INET library

- Integrate gPTP model seamlessly with other protocols from INET
- Implement only time synchronization and propagation delay measurement
- Best master clock not part of project
 Assumption: GM shall no be selected randomly
- Implement simple clock with constant drift

Model of clock with constant drift

• Model of clock with constant drift

Model of gPTP functionalities

Traditio et Innovatio

3. Implementation

Model of time-aware systems

4. Evaluation: Simulation Setup

- Same setup as Lim et al.* (BMW + TUM)
- Evaluation:
 - · Propagation delay measurement
 - Time difference to GM (before resynchronization)

Clock drift of time-aware systems in domain [ppm]											
Master	Bridge0	Bridge1	Bridge2	Slave0	Slave1	Slave2	Slave3	Slave4	Slave5	Slave6	Slave7
0	30	-15	20	-50	10	50	-5	-50	40	-15	-35

*Hyung-Taek Lim, Daniel Herrscher and Lars Volker "IEEE 802.1AS Time Synchronization in a switched Ethernet based In-Car Network", IEEE VNC 2011

4. Evaluation: Propagation Delay Measurement

- Converge to 25 ns (absolute difference < 0.5 ns)
- Lim et al.: +/- 10 ns acceptable

Node	Propagation delay[ns]	Error (%)	Absolute difference [ns]	
Slave 0	25.43	1.72%	0.43	
Slave 1	25.43	1.72%	0.43	
Slave 2	24.78	-0.88%	0.22	
Slave 3	25.29	1.16%	0.29	
Slave 4	25.29	1.16%	0.29	
Slave 5	24.78	-0.88%	0.22	
Slave 6	24.78	-0.88%	0.22	
Slave 7	25.43	1.72%	0.43	
Bridge 0	25	0.00%	0.00	
Bridge 1	25.43	1.72%	0.43	
Bridge 2	24.78	-0.88%	0.22	

4. Evaluation: Time Difference to GM

- Time difference to GM (before resynchronization)
- As expected: e.g., for 125ms and +/- 50ppm \rightarrow +/- 6.25us

	Time difference to GM before resynchronization					
Node	Sync interval	Sync interval				
	62.5 ms	125 ms				
Dridge 0	2.5 ms	1201113				
Bridge U	2.30	4.24				
Slave 0	-3.12	-6.25				
Slave 1	0.63	1.25				
Slave 7	-2.19	-4.37				
Bridge 1	-0.94	-1.87				
Slave 2	3.13	6.25				
Slave 6	-0.94	-1.87				
Slave 5	2.50	5.00				
Bridge 2	1.25	2.50				
Slave 3	-0.31	-0.63				
Slave 4	-3.12	-6.25				

5. Conclusion

- We have contribute
 - Simulation model of gPTP
 - Models for time-aware systems: end-station and bridge
 - Simple clock model with constant drift
- Comparisons of results to literature
- Useful in simulating any networks based on the gPTP
- Entire system is publicly available*
- Future work: Utilize other the clock models

* https://gitlab.amd.e-technik.uni-rostock.de/peter.danielis/gptp-implementation

Traditio et Innovatio

Thank you for your attention. Questions?