UNIVERSITY OF FLORENCE Department of Information Engineering

An Integrated Framework for Fog Communications and Computing in Internet of Vehicles

Alessio Bonadio, Francesco Chiti, Romano Fantacci

name.surname@unifi.it

Outline

Introduction

Fog Communications & Computing Vehicular Fog Communications & Computing Consensus based ITS Applications GAUChO Project Vision

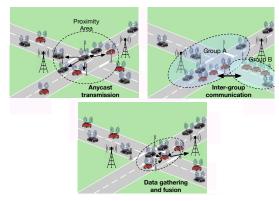
Proposed Integrated Framework

System Model Communication Protocols

Framework Modeling & Validation

Simulated Model Performance Evaluation

Conclusions

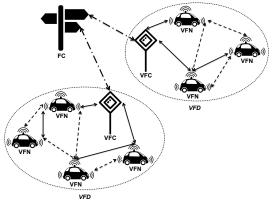

- Cloud Computing (CC): ubiquitous on-demand access to remote computing and storage platforms
- Fog Computing (FC): emerging paradigm that extends CC towards the network edge
 - where applications/services run directly over end-devices
- ► FC goals:
 - improve efficiency
 - reduce data processing and storage latency
- Fog Communication and Computing (FC²): novel paradigm supporting configurability, adaptability, flexibility and energy/spectrum-efficiency

- Internet of Vehicles (IoV): wireless ecosystem that allows vehicles to *locally* gather, exchange and refine traffic-related information
 - FC² vision enhance reactiveness to sudden context variations and support real-time data analysis
- Mobile Ad hoc NETworks (MANETs): integrating vehicles and roadside units (RSUs)
 - IEEE 1609/WAVE: present reference standard
 - vehicle-to-vehicle (V2V) and RSU-to-vehicle (R2V) interfaces
 - future 5G mobile communication systems:
 - ► abstract and flexible vehicle-to-everything (V2X) communication mode

- Traffic safety and management via information broadcasting
- Cooperative applications, where a group of vehicles spontaneously make coordinated and mutually consistent decisions
 - agreement on the exchanged data is essential

Green Adaptive Fog Computing and Networking Architecture (GAUChO)

- MIUR PRIN Bando 2015 (Grant 2015YPXH4W-004)
- novel distributed and heterogeneous architecture able to integrate and jointly optimize FC and FN capabilities
- supporting low-latency, energy-efficiency, security, self-adaptation, and spectrum efficiency
- Task T1.3: advanced methodologies for network formation, allowing fixed or mobile devices to be *connected*, and to achieve a full *context-awareness* by means of exchanging and jointly refining context-related information



Introduction GAUChO Project Vision

Proposed Integrated Framework System Model

Vehicular Fog Architecture

- VF Domains (VFDs): VF Nodes (VFNs) + VF Controllers (VFCs)
- logical (*overlaying* application) and physical (*underlying* network) communications interfaces
- ► Fog Controller (FC) for interoperability among VFDs

Proposed Integrated Framework System Model

VFN Reference Model

Consensus Sensing APP

NET Layer

IEEE 802.11p MAC

IEEE 802.11p PHY

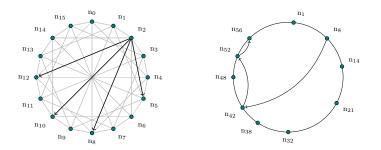
- Consensus Sensing (CS) Application designed according to BC technology
- no Transport Layer (i.e., UDP like) as usual in VANETs
- Network Layer functionalities
- Physical and Data Link Layers compliant with IEEE 802.11p
- modeled with OMNeT++/Veins environment

Proposed Integrated Framework Application Layer

- Proposed CS protocol for information reconciliation
 - designed according to the BlockChain (BC) technology
 - participants write and read from a distributed ledger, i.e., a chain that records all the observations/decisions
 - common view of the overall information
 - integrity and consistency of the ledger and non ambiguous ordering
 - 1. once the network is formed, a VFN sends collected information via ObservationMessages (OMs)
 - extends WaveShortMessage
 - 2. each VFN updates its block as information is received
 - each VFN initiates the validation phase sending the validated block to other VFNs via a ValidationMessage (VM)
 - ► a WaveShortMessage that contains the Proof of Work (PoW)
 - probabilistic model of the validation latency
 - block size B = N/2, where N is the number of VFNs

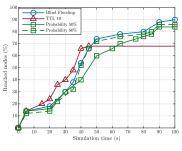
Proposed Integrated Framework Network Layer

- Delay Tolerant Network (DTN): support data dissemination over links that may lack *continuous* connectivity:
 - Geographic protocols, which are based on nodes location
 - Epidemic protocols: inherent anycast addressing scheme suited for CS applications
 - 1. Blind Flooding (BF): each node forwards the received message to *all* its neighbors
 - 2. **TTL-based Flooding** (TF): a Time To Live (TTL) counter limits the retransmission of a message
 - 3. **Probability-based Flooding** (PF): each node retransmits the message to its neighbors with a probability *P*

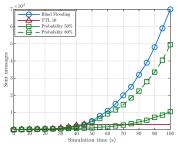

Generalized Multiflow Network Coding (NC):

 enhanced DTN approach where each VFN iteratively stores, carries and forwards a *random linear combination* of the previously received packets (blocks)

Proposed Integrated Framework

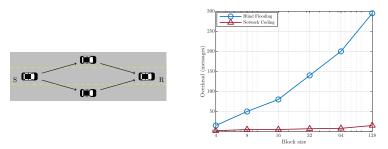


- **Chord** protocol:
 - decentralized peer-to-peer (P2P) overlay network based on distributed hash tables (DHT)
 - mapping of keys into nodes (L2 and L3 addresses resolution)
 - O(log N) known nodes for each VFN
 - O((log N)²) messages to manage join and leave topology changes in a dynamic and distributed way



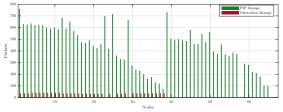
THE REPORT OF TH

- Epidemic DTN
 - grid map imported from Open Street Map
 - accident management (N = 50)
 - Veins' Car and RSU modules
 - communication provided by Nic80211p via WaveShortMessageS


- reached VFNs:
 - ► TF worst (70%)
 - BF and PF comparable

- protocol overhead:
 - PF outperforms BF
 (P = 0.5 it is about 1.
 - (P = 0.5 it is about 1/7)

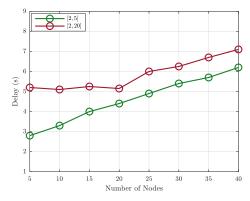
Total and the second se


- Multiflow Network Coding
 - diamond topology: two Relay + Sender (S) + Receiver (R)
 - Relay only performs store, combine and forward
 - external library (Eigen) to manage the messages cod & decoding
 - module entirely developed, messages are WaveShortMessageS

- NC overhead:
 - ► gap w.r.t. BF increases at the increasing of packet block size
 - diversity gain provided by the two independent Relays

- Chord
 - more realistic map and traffic patterns (default Erlangen map on SUMO mobility simulator)
 - ► N = 35, Small-World Network paradigm
 - Car and RSU Veins modules
 - communication provided by Nic80211p
 - new P2PMessage (P2PM) extending WaveShortMessage

- Chord overhead (P2PMs + OMs):
 - two different networks formed
 - overhead gradually decreases with time
 - ► P2PMs higher than OMs: Chord network formation more critical



Routing Protocols Comparison

- number of messages per vehicle needed to disseminate an information block:
 - BF $\approx 2 \cdot 10^3$
 - DTN $\approx 10^3$
 - ► NC ≈ 10²
 - Chord $\approx 2 \cdot 10^2$
- but Chord always supports reliable data distribution
 - thus representing the better candidate

- CS Application Layer related metric:
 - overall latency need to validate a block
 - integrated BlockChain over Chord networks
 - two different PoW time duration intervals

▶ good scalability w.r.t. the number of FVNs (N)

- ► FC² paradigm application to context awareness VANET services
- Integrated system architecture
 - APP and NET Layers
 - DTN Flooding based, NC multiflows and Chord protocols
 - BC technology for distributed consensus making
- Modelling and Development with OMNeT++/Veins Framework
 - modularity, high fidelity and flexibility
- Comprehensive simulation campaign
 - Chord reactiveness in topology controlling allows a fast and reliable consensus achievement and flexibility
- ► Future Developments:
 - Redesign over 4G/5G systems with SimuLTE+Veins
 - Extension to FANETs using OLSR and Paxos protocols

UNIVERSITY OF FLORENCE Department of Information Engineering

An Integrated Framework for Fog Communications and Computing in Internet of Vehicles

Alessio Bonadio, Francesco Chiti, Romano Fantacci

name.surname@unifi.it

