

OMNeT++ Community Summit, 2019

An Efficient and Versatile
Signal Representation

in the INET Physical Layer

Hamburg University of Technology – Germany – September 04-06, 2019 Levente Mészáros

Motivation

● INET 4 already provides several signal representations

– Unit disk, scalar and dimensional
– Dimensional model is based on MiXiM

● Problems with current dimensional model

– 10+ times slower than equivalent scalar model
– Has open bugs which are very difficult to fix
– Eager computation model makes it harder to speed up
– Iterator API makes it difficult to extend

Benefits

● Representation for any kind of signals
(time + frequency domains)

– OFDM, FHSS, UWB, etc.
● Mix different wireless technologies arbitrarily

● Comparable performance to equivalent scalar
representation and scale well for others

● Scale to large networks with small memory footprint

● Live visualization of transmission medium spectrum
(space + time + frequency domains)

Live Demos

IEEE 802.11 – WIFI

IEEE 802.15.4 – WPAN

Hypothetical UWB

Network and Configuration

● No changes to the network

● Easily switch from scalar to multidimensional model

OFDM signal

c = center frequency
b = bandwidth

left, linear = interpolation methods

● Represent arbitrary signal spectrum using interpolation

FHSS signal

● Transmitted signal spreads both in time and frequency

fr
eq

ue
n c

y

time

f1
f2

f3

f4

f5

f6

● SNIR is also represented in time and frequency domains

● Error models can vary from statistical to symbol level

UWB signals

● Describe details of UWB signals in the time domain

● Compute path
loss, interference
and reception in
the time domain

Multidimensional Mathematical Function API

● getRange(), getDomain()

● isFinite(Interval), isZero(Interval)

● getValue(Point), getIntegral(Interval)

● getMin(Interval), getMax(Interval), getMean(Interval)

● add(IFunction), subtract(IFunction)

● multiply(IFunction), divide(IFunction)

● print(Stream, Interval)

● partition(Interval, Callback)

Mathematical Function Properties

● Primitive and composite functions (one or more domain
dimensions)

● Extensible implementation with user defined functions

● Use physical units (use C++ type system to ensure
dimensional correctness; self documentation)

● Small objects (reduce memory footprint)

● Shared pointers (simplify memory management and
sharing)

● Lazy computation (eliminate unused intermediate results)

● Optional caching (reuse results)

Partitioning to Primitive Functions I.

● Represent a function with piecewise primitive functions

● Primitive mathematical functions:

– Constant (over all dimensions)
– Linear (in 1 dimension, constant in the others)
– Bilinear (linear in 2 dimensions, constant in the others)
– Reciprocal (in 1 dimension, constant in the others)

constant

lin
ea

r

in one
dimension

Partitioning to Primitive Functions II.

partition

● Partitioning nested functions with
subdivision

● Partitioning in 2 or more dimensions

constant

bilinear
linear

linear

constant

arbitrary function

h
=

 f
 +

 g

Algebraic Operations I.

● Addition/subtraction (e.g. summing total interference)
– constant ± constant = constant

– linear ± constant = linear

– linear ± linear = linear

– reciprocal ± anything = not supported

– etc.

● Multiplication (e.g. applying transmission power)
– constant * constant = constant

– constant * linear = linear

– linear * linear = not supported

– etc.

Algebraic Operations II.

● Division (e.g. calculating SNIR)
– constant / constant = constant

– constant / linear = reciprocal

– linear / constant = linear

– linear / linear = reciprocal

– reciprocal / reciprocal = not supported

– Etc.

● Various additional algebraic optimizations for 0 and 1
constant values

Functions Operating on Functions

● Shifting along the domain axes (e.g. for applying
transmission central frequency and start time to a signal)

● Approximating by sampling and using interpolation
between samples (e.g. for using a frequency dependent
attenuation function)

● Integrating over one dimension (reduces dimensions by
1; e.g. for computing the signal power over the spectrum)

● Memoizing (caching results to speed up further
computations)

Isotropic Background Noise

DomainLimited

Constant

bg. noise

Signal with Non-trivial Spectrum I.

Signal with Non-trivial Spectrum II.

*

/

OneDimensionalInterpolated

DomainLimited

Constant

OneDimensionalBoxcar

OrthogonalCombinatorConstant

signal

● No center frequency and start time
● Reused among several transmissions
● May be memoized if very complex

normalizes in frequency domain

applies power

Signal Transmission

Shift

signal

transmission

start time and
center frequency

Reception with Constant Attenuation

*

constant

transmission

reception

Shift

propagation time

attenuation

using the
center frequency

R. with Frequency Dependent Attenuation

*

Approximation

FrequencyDependentAttenuation

PathLoss ObstacleLoss

reception

transmission

Shift
approximation

propagation time attenuation

Interference

Sum

reception receptionbg. noise

interference

...

just multiple additions

Signal to Noise and Interference Ratio

**

TwoDimensionalBoxcar

TwoDimensionalBoxcar

/

SNIR

reception interference

bandpass filters

Transmission Medium Spectrum Visualization

WPAN and WIFI WIFI and UWB WIFI crosstalk

Using SNIR in the Error Model

● Using a single SNIR value for the whole signal

– Simple error models but less accurate

– Problem with minimum SNIR: spike noise may cause reception failure

– Problem with mean SNIR: substantial noise may doesn’t cause reception failure

● Using a single SNIR value for each physical layer symbol

– More complicated error models but more accurate

Questions and Answers

