

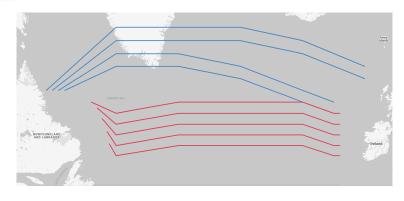
Outline

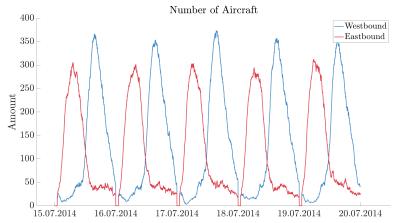
1. Simulation Scenario

- 2. Avionic Routing Protocol (AODV-LD)
- 3. Multiscale Simulation Architecture
- 4. Performance Results

5. Closing Remarks

Simulation Scenario




 North Atlantic Corridor: Oceanic airspace between Europe and North America

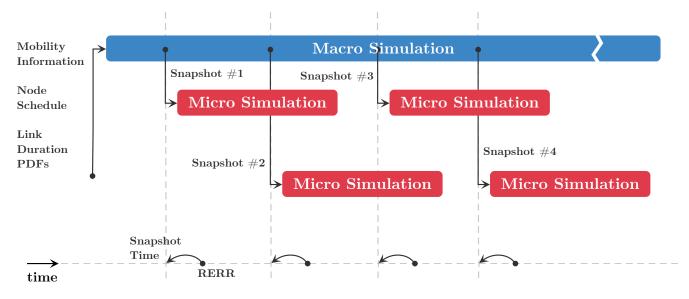
Simulation Scenario

- Aircraft form swarms crossing the NAC
- Eastbound and Westbound traffic is isolated in time and space
- Communication range: ~400km
- Up to 400 aircraft at the same time
- Duration of swarm: 5-6 hours

AODV-LD

- Link duration based Ad-hoc On-Demand Distance Vector Routing Protocol (AODV-LD) is an adaption of AODV:
 - AODV is a common routing protocol for ad-hoc networks. It was selected for its reactive nature and an existing reference implementation
 - Adaption: Use expected path duration as routing metric instead of number of hops
 - Route Requests (RREQs) must carry additional information
 - Several RREQs must be evaluated in the IGW
 - Strategy to calculate the expected path duration is needed
- Metrics: Route duration, E2E delay, Route acquisition delay

AODV-LD



TUHH
Hamburg University of Technology

- LTE-like Link/PHY layer technology
- Challenge: LTE is very computing intensive, Aircraft fly for several hours
- Solution: Multiscale Simulation
 - Macro simulation captures routing behavior
 - Micro simulation captures link layer timinigs

Application Layer	Traffic Application	
Transport Layer		UDP
Network Layer	IP	Routing
Link Layer	Ideal Networ	LTE Network
Physical Layer	Interface Car	Interface Card

- Macro simulation runs twice: To collect timestamps and to creates snapshots
- Micro simulation started from snapshots

- SnapshotManager
 - Global Module
 - Orchestrates snapshot creation
- SnapshotModule
 - One module per host
 - Serializes state into snapshot and vice versa

SnapshotManager host[0] host[N] host[1] Register rare event Trigger snapshot creation

- Content of a snapshot:
 - IP address
 - Link lifetime of encountered neighbors
 - Routing table + AODV specific route data

Performance

Macro:

- 31282 events / simsecond
- Runtime: ~8h

• Micro:

- 823583 events / simsecond
- Runtime: ~5min

Closing Remarks

- Multiscale simulation enables full system investigation
 - Over long times
 - In high detail
- Multiscale simulation only possible when simulation state can be derived from a simpler model
- Multiscale simulation requires tailor made snapshots

