Proposed Research Topic:

Zero-Config Automatic
Parallel Simulation

Andras Varga, Levente Mészaros
OMNeT++ Core Team

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

"Proposed Research Topic™

NOT finished research.
NOT even research underway.

A promising research topic for those looking for one.
— (We see potential in the idea and find it exciting, but we don't have the resources [mostly,
time] to elaborate it in-house.)

Why?
— Practically VERY useful
 Everybody would love their simulations to run X times faster on common
hardware!
— Doable
» We have already spent some time trying out the idea and proven (at least to ourselves)
that it is feasible and the approach outlined here can be made to work.
— Novel
» Related research only took of a few years ago
— Plenty of questions and degrees of freedom
* publication opportunities!

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Two Questions

What is zero-configuration parallel simulation?

(and why is it called so?)

Doesn’t OMNeT++ have parallel simulation
support already...”?

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

1. Partition the network
e Each partition will be run in a separate LP (logical process)

LP3
ﬁe@]\ .
o——©—_

@ rte[8] B ralq - ——a——®
rtE[Z]\.,._I \Fj\ rt’é 113;(’/ ﬂ?ﬁ] ree[19] rte[26] / é{sz] rte[3\4]\

ﬁL rte[13] g8
o relil ,ﬁ[e[ﬂe[{‘z‘] Rel10] edfia] —— AT rm
rte[0] rte_tla_}] \ / rte[ZM_ __ 'ﬂ'fis] /rbé[;]“ﬁmfk / rte(39] | /rte[41]

® ® - te[30]
L P 1 rte[3] rte[ﬁ\ ‘ /‘/Eﬁ\‘{ féﬁ] /te[42]

- ' P f
iz rte[24] /3[29] b ﬂe[ss]
LP2 7&[1 6] rte[23] \ ..A;im

rte[28] ' ————@
® rte[31] rte[33]

rte[17] LP4

Partition — how...?
* interaction between partitions should be minimal
¢ link delays across partitions should be high
e workload should be evenly distributed

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

2. Describe this partitioning in omnetpp.ini

[General]

parallel-simulation = true
.rte[0. .4] .partition-id = 0
.rte[5..17] .partition-id =1
.rte[22] .partition-id =1
.rte[18..21] .partition-id
.rte[23..24] .partition-id

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

3. Run the simulation on a multiprocessor

» Each partition (logical process, LP) will be a separate simulation process
« Executing on its own CPU (or core)

« Communication over MPI e
O-ELE

Hardware: multicore laptop/desktop, HPC cluster
(low communication latency is essential, more so than bandwidth)

dWS

Azure

commercial services
multicore
laptop / desktop :
uni lab
HPC facility

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

Limitations:

riable

Overhead:

communication
overhead

synchronizatio Can run on clusters (distributed memory multiprocessors) too,
overhead but on multicore CPUs, doesn’t properly take advantage of

(lookahead is critjcal shared memory

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

Why synchronization is needed

Example: Two LPs, each of them executing events independently in timestamp order,
and sending events to each other

‘-.
~ Jégﬁ.
already simulated VD

xx(?{‘p
\w?p local simulation time
®

L
W
] \

—Ts

—
already simulated

(CAUSALITY VIOLATION)

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Maintaining Event Causality

 The future should not affect the past.
That is, processing an event must not have an effect on
events with smaller timestamps®™.

— This is the main problem of Parallel
Discrete Event Simulation (PDES).

* More precisely, the (timestamp,priority,insertOrder) triplet is used by
OMNeT++ for ordering events

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

PDES Approaches

Conservative

do not allow causality violations
example: null-message protocol,
a.k.a Chandy-Misra-Bryant

performance: "lives or dies by the
lookahead” (e.g. link delays)

implementation: straightforward

chosen by OMNeT++

Optimistic

allow incausalities, detect them,
and repair them by rolling back
example: Time Warp algorithm

performance: may suffer from
excessive rollbacks

implementation: complicated protocol
(anti-messages etc), laborious
implementation (state saving &
restoration needs to be implemented
in each and every model component,
as C++ provides no STM solution)

so only necessary if Conservative
cannot fully utilize the hardware

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Diverging From the LP-Based Approach
Why?

e Advances in hardware

* increase in single-core performance slowed, number of

cores steadily increasing instead
e 4 cores standard, 8/12/16+ cores, etc. available ®HPC clusters less
needed
¢ memory abounds
e 8/16G is standard, 32/64G and up easily available = “distribute
memory requirements” argument for LP-based PDES no longer
holds

» Limitations of LP approach
— coding limitations (no access across partitions, etc.)

— overhead (communication, serialization; unable to take full advantage
of shared memory systems)

— Inconvenience (mpi_run, etc)

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Multi-Threaded Simulation

worker
shared Future Event Set (FES)

future
Worker threads take events from a shared FES, process

them, and insert the resulting events into the FES.

Challenges:
1. Event causality must be kept
2. Concurrent access of data structures (FES, simulation objects)

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

EventCausality

- .+ 437 lightyears “. . "

~. Sun " W RGeS e - Proxima Centauri

| What |f it exploded nght now ik

. or 4.3 years-ago?”

— Simultanous events at both Cannot affect each other

— Moreover: if time dn‘ference < 4 37 years — events cannot affect
--each other ' i

13
OMNeT++ Corr{munity Virtual Summit — Oct. 5.6, 2020 - s -

Visualization: Space-Time Diagram

“Light cone” illustrates which
part of the space-time an
event can affect.

- A can affect B
- A cannot affect C

cvent B speed of light

event C @ cvent A

space

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Event Coloring

* GREEN events are
independent (cannot be
affected by any other
event)

* RED events have
dependencies (can be
affected by others)

AN

progress of
time

now

As time progresses: 1. green events stay green; 2. red events may turn green

15

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Applying to Simulation

Between modules, if only interaction is message passing:

L
[j delay = 100ms distance(A,B) = 100ms

A B
distance(B,A) = inf

“100 light-milliseconds distance A-to-B”

distance(C,D) = <total delay on shortest* path>

* using delay as metric

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Zero-Config Parallel Simulation

* Meaning of coloring:
— Green events can be executed in concurrently
— Red events cannot

* During simulation:
— Worker threads process green events
— Colorer continually works on turning more events
green

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Mapping to Hardware

Coloring algorithm may run
continuously in the background.
[when done, wait for change in
FES]

Separate thread/core
can be dedicated
to coloring

Coloring algorithm
can be parallel in
itself (if that’s the
bottleneck)

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Coloring Algorithm

Pseudocode:

for each red event in the FES:
if it's not in any other event's "“light cone™:
mark it as green

A little more formally:

for each red event E1 in module M1 in the FES:
T := (minimum of arrivalTime(E2) + distance(M2, M1) \
for each event E2 in module M2 before E1 in the FES)
if arrivalTime(El) < T:
mark E1 as green

T: time of earliest possible effect from other modules
distance(M2, M1): total delay on shortest path from M2 to M1

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

The distance() Function

* Precompute
— Then keep up-to-date with topology changes

» Store as matrix
— Requires N? space for N modules
— Optimization possibility: represent zero-delay module

groups as one entry (row/col)
* In INET, almost all modules within a host or router form such
a zero-delay group — reduces matrix size

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Non-Message Dependencies

« Method call: instantaneous effect

Action: “A performs B->f ()~

Setters: A—B dependence: distance(A,B)=0
* like a zero-delay A—B message sending

Getters: B—A dependence: distance(B,A)=0

— Mixed: mutual dependence

 Global variable: instantaneous effect
— A writes, B reads: A—B dependence

Signals
— Listeners are “method calls in disguise”
 as emit() indirectly invokes listeners
— For all E emitter and L listener pairs: E—L dependence,
i.e. distance(E,L)=0

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Implementing the Colorer

Pseudocode shows a naive algorithm
— Looks at all events every time

* For performance, it should be incremental

 |ssue:

Worker thread: Colorer: Removing an event and
msg = fes->pop();

mod->handleMessage (msg) ; adding consequence events should
happen atomically!

handleMessage(msg) {
delete msg /
send(msg,..) /
scheduleAt(t,msqg)

Resolution: Colorer must work on a view
:> of the FES, not on the FES itself!

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Worker Thread Scheduling

How should worker threads pick from the pool

of green events?
« Grabbing >1 event at a time may reduce blocking overhead
e If #events > #cores:
— in which order to serve them? o wu B

— order affects performance ®
e If #green < #cores: kS

— eager assignment?

— being eager may not always be the best strategy
* may pay off to wait for new events that contribute
more to simulation progress

 Further observations?

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Concurrent Access

 FES is under heavy concurrent access
— locking
— lock-free data structures

e Simulation model and state

— Challenge: Cross-module method calls
» Relaxing: If events within a (compound) module are NOT processed concurrently, inter-
node accesses don’t need to be protected
— Simsignals: Method calls in disguise!
« Emitting a signal indirectly invokes the listeners
» Listeners need to be protected against concurent accesses
— Model code needs to be instrumented for zero-config parsim!

« Simulation kernel and infrastructure
— If model is static -- no protection needed
— Dynamic module creation and other model changes
— Result filters/recorders also need to be protected

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Assessment on INET

“Are there enough green events in “normal” simulations?”

Experiment: We added a simple version of Colorer to an otherwise
vanilla OMNeT++ INET simulation.

Result: Usually 4-5 green events in the FES in a network of 4 LANS, 4
hosts/LAN. This was a small simulation; we expect the number of green
events to scale linearly with the size of the simulation = enough to
keep all CPU cores busy.

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

Research Questions

Topics open to research:
* Choice of FES data structure
 Efficient Colorer algorithm
» Worker thread scheduling

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

If you are i n te reSted please contact us!

END

(QUESTIONS?)

OMNeT++ Community Virtual Summit — Oct. 5-6, 2020

	1 - Proposed Research Topic:
Zero-Config Automatic Parallel Simulation
	2 - “Proposed Research Topic”
	3 - Two Questions
	4 - OMNeT++ Parallel Simulation Support
	5 - OMNeT++ Parallel Simulation Support
	6 - OMNeT++ Parallel Simulation Support
	7 - OMNeT++ Parallel Simulation Support
	8 - OMNeT++ Parallel Simulation Support
	9 - Maintaining Event Causality
	10 - PDES Approaches
	11 - Diverging From the LP-Based Approach
	12 - Multi-Threaded Simulation
	13 - Event Causality
	14 - Visualization: Space-Time Diagram
	15 - Event Coloring
	16 - Applying to Simulation
	17 - Zero-Config Parallel Simulation
	18 - Mapping to Hardware
	19 - Coloring Algorithm
	20 - The distance() Function
	21 - Non-Message Dependencies
	22 - Implementing the Colorer
	23 - Worker Thread Scheduling
	24 - Concurrent Access
	25 - Assessment on INET
	26 - Research Questions
	27 - End

