
OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Proposed Research Topic:

Zero-Config Automatic

Parallel Simulation

András Varga, Levente Mészáros

OMNeT++ Core Team

1

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

“Proposed Research Topic”

• NOT finished research.

• NOT even research underway.

• A promising research topic for those looking for one.
– (We see potential in the idea and find it exciting, but we don't have the resources [mostly,

time] to elaborate it in-house.)

• Why?
– Practically VERY useful

• Everybody would love their simulations to run X times faster on common

hardware!

– Doable

• We have already spent some time trying out the idea and proven (at least to ourselves)

that it is feasible and the approach outlined here can be made to work.

– Novel

• Related research only took of a few years ago

– Plenty of questions and degrees of freedom

• publication opportunities!

2

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Two Questions

What is zero-configuration parallel simulation?
 (and why is it called so?)

Doesn’t OMNeT++ have parallel simulation

 support already...?

3

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

1. Partition the network
Each partition will be run in a separate LP (logical process)

Partition – how...?

interaction between partitions should be minimal

link delays across partitions should be high

workload should be evenly distributed

LP4

LP3

LP5

LP2
LP1

4

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

2. Describe this partitioning in omnetpp.ini

[General]

parallel-simulation = true

*.rte[0..4].partition-id = 0

*.rte[5..17].partition-id = 1

*.rte[22].partition-id = 1

*.rte[18..21].partition-id = 2

*.rte[23..24].partition-id = 2

...

Here’s the“configuration”

5

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

3. Run the simulation on a multiprocessor
• Each partition (logical process, LP) will be a separate simulation process

• Executing on its own CPU (or core)

• Communication over MPI

commercial services

supercomputer center

uni lab

HPC facility

multicore

laptop / desktop

LP

1

LP

2

LP

3

LP

4

LP

5

6

• Hardware: multicore laptop/desktop, HPC cluster
 (low communication latency is essential, more so than bandwidth)

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

Global

variables

communication

overhead

Can run on clusters (distributed memory multiprocessors) too,

but on multicore CPUs, doesn’t properly take advantage of

shared memory

synchronization

overhead
(lookahead is critical)

7

Limitations:

Overhead:

Accessing modules

in other partitions

Method calls

across partition

boundaries

Simsignal propagation

across partition

boundaries

Moving modules to a

different partition (?)

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

OMNeT++ Parallel Simulation Support

Why synchronization is needed

Example: Two LPs, each of them executing events independently in timestamp order,

and sending events to each other

m
e
ssa

g
e local simulation time

t

t

already simulated

5s

7s

already simulated

BANG!!!

(CAUSALITY VIOLATION)

8

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Maintaining Event Causality

• The future should not affect the past.

That is, processing an event must not have an effect on

events with smaller timestamps*.

– This is the main problem of Parallel

Discrete Event Simulation (PDES).

* More precisely, the (timestamp,priority,insertOrder) triplet is used by

OMNeT++ for ordering events
9

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

PDES Approaches

Conservative

• do not allow causality violations

• example: null-message protocol,

a.k.a Chandy-Misra-Bryant

• performance: ”lives or dies by the

lookahead” (e.g. link delays)

• implementation: straightforward

• chosen by OMNeT++

Optimistic

• allow incausalities, detect them,

and repair them by rolling back

• example: Time Warp algorithm

• performance: may suffer from

excessive rollbacks

• implementation: complicated protocol

(anti-messages etc), laborious

implementation (state saving &

restoration needs to be implemented

in each and every model component,

as C++ provides no STM solution)

• so only necessary if Conservative

cannot fully utilize the hardware

10

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Diverging From the LP-Based Approach

Why?
Advances in hardware

increase in single-core performance slowed, number of

cores steadily increasing instead
4 cores standard, 8/12/16+ cores, etc. available HPC clusters less

needed

memory abounds
8/16G is standard, 32/64G and up easily available  “distribute

memory requirements” argument for LP-based PDES no longer

holds

• Limitations of LP approach
– coding limitations (no access across partitions, etc.)

– overhead (communication, serialization; unable to take full advantage

of shared memory systems)

– inconvenience (mpi_run, etc)

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Multi-Threaded Simulation
worker

threads shared Future Event Set (FES)

now future

Challenges:
1. Event causality must be kept

2. Concurrent access of data structures (FES, simulation objects)

Worker threads take events from a shared FES, process

them, and insert the resulting events into the FES.

12

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Event Causality

“What if it exploded right now...?”

“... or 4.3 years ago?”
– Simultanous events at both cannot affect each other

– Moreover: if time difference < 4.37 years → events cannot affect

each other

Sun Proxima Centauri

4.37 light-years

13

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Visualization: Space-Time Diagram

t

x

speed of light

event Aevent C

event B

ti
m

e

space

“Light cone” illustrates which

part of the space-time an

event can affect.

- A can affect B

- A cannot affect C

14

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

ti
m

e

now

progress of

time

GREEN events are

independent (cannot be

affected by any other

event)

RED events have

dependencies (can be

affected by others)

As time progresses: 1. green events stay green; 2. red events may turn green

Event Coloring

15

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Applying to Simulation

Between modules, if only interaction is message passing:

A B

delay = 100ms

“100 light-milliseconds distance A-to-B”

distance(C,D) = <total delay on shortest* path>
 * using delay as metric

C

D

distance(A,B) = 100ms

distance(B,A) = inf

16

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Zero-Config Parallel Simulation

• Meaning of coloring:
– Green events can be executed in concurrently

– Red events cannot

• During simulation:
– Worker threads process green events

– Colorer continually works on turning more events

green

17

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Mapping to Hardware

Separate thread/core

can be dedicated

to coloring

Coloring algorithm

can be parallel in

itself (if that’s the

bottleneck)

Coloring algorithm may run

continuously in the background.

[when done, wait for change in

FES]

18

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Coloring Algorithm

Pseudocode:

for each red event in the FES:
if it’s not in any other event’s “light cone”:

mark it as green

A little more formally:

 for each red event E1 in module M1 in the FES:
 T := (minimum of arrivalTime(E2) + distance(M2, M1) \
 for each event E2 in module M2 before E1 in the FES)
 if arrivalTime(E1) < T:
 mark E1 as green

T: time of earliest possible effect from other modules
distance(M2, M1): total delay on shortest path from M2 to M1

19

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

20

The distance() Function

• Precompute
– Then keep up-to-date with topology changes

• Store as matrix
– Requires N2 space for N modules

– Optimization possibility: represent zero-delay module

groups as one entry (row/col)
• In INET, almost all modules within a host or router form such

a zero-delay group → reduces matrix size

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Non-Message Dependencies

• Method call: instantaneous effect
– Action: “A performs B->f()”

– Setters: A→B dependence: distance(A,B)=0
• like a zero-delay A→B message sending

– Getters: B→A dependence: distance(B,A)=0

– Mixed: mutual dependence

• Global variable: instantaneous effect
– A writes, B reads: A→B dependence

• Signals
– Listeners are “method calls in disguise”

• as emit() indirectly invokes listeners

– For all E emitter and L listener pairs: E→L dependence,

i.e. distance(E,L)=0

21

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Implementing the Colorer

• Pseudocode shows a naïve algorithm
– Looks at all events every time

• For performance, it should be incremental

• Issue:

22

Worker thread:
msg = fes->pop();
mod->handleMessage(msg);

handleMessage(msg) {
delete msg /
send(msg,..) /
scheduleAt(t,msg)

}

Colorer: Removing an event and

adding consequence events should

happen atomically!

Resolution: Colorer must work on a view

of the FES, not on the FES itself!

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Worker Thread Scheduling

How should worker threads pick from the pool

of green events?
• Grabbing >1 event at a time may reduce blocking overhead

• If #events > #cores:

– in which order to serve them?

– order affects performance

• If #green < #cores:

– eager assignment?

– being eager may not always be the best strategy
• may pay off to wait for new events that contribute

more to simulation progress

• Further observations?

23

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Concurrent Access

• FES is under heavy concurrent access
– locking

– lock-free data structures

• Simulation model and state
– Challenge: Cross-module method calls

• Relaxing: If events within a (compound) module are NOT processed concurrently, inter-

node accesses don’t need to be protected

– Simsignals: Method calls in disguise!
• Emitting a signal indirectly invokes the listeners

• Listeners need to be protected against concurent accesses

– Model code needs to be instrumented for zero-config parsim!

• Simulation kernel and infrastructure
– If model is static -- no protection needed

– Dynamic module creation and other model changes

– Result filters/recorders also need to be protected

24

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Assessment on INET

“Are there enough green events in “normal” simulations?”

Experiment: We added a simple version of Colorer to an otherwise

vanilla OMNeT++ INET simulation.

Result: Usually 4-5 green events in the FES in a network of 4 LANS, 4

hosts/LAN. This was a small simulation; we expect the number of green

events to scale linearly with the size of the simulation  enough to

keep all CPU cores busy.

25

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

Research Questions

Topics open to research:
• Choice of FES data structure

• Efficient Colorer algorithm

• Worker thread scheduling

26

OMNeT++ Community Virtual Summit – Oct. 5-6, 2020

END
(QUESTIONS?)

If you are interested, please contact us!

27

	1 - Proposed Research Topic:
Zero-Config Automatic Parallel Simulation
	2 - “Proposed Research Topic”
	3 - Two Questions
	4 - OMNeT++ Parallel Simulation Support
	5 - OMNeT++ Parallel Simulation Support
	6 - OMNeT++ Parallel Simulation Support
	7 - OMNeT++ Parallel Simulation Support
	8 - OMNeT++ Parallel Simulation Support
	9 - Maintaining Event Causality
	10 - PDES Approaches
	11 - Diverging From the LP-Based Approach
	12 - Multi-Threaded Simulation
	13 - Event Causality
	14 - Visualization: Space-Time Diagram
	15 - Event Coloring
	16 - Applying to Simulation
	17 - Zero-Config Parallel Simulation
	18 - Mapping to Hardware
	19 - Coloring Algorithm
	20 - The distance() Function
	21 - Non-Message Dependencies
	22 - Implementing the Colorer
	23 - Worker Thread Scheduling
	24 - Concurrent Access
	25 - Assessment on INET
	26 - Research Questions
	27 - End

